Arpita Iddya

iddya@ucla.edu | 951-961-7322

Education

University of California, Los Angeles (UCLA) PhD, Civil and Environmental Engineering, (Minor: Chemical Engineering) Thesis: "Facilitating Interfacial Processes for Specific Ion/Molecule Recovery" Advisor: Prof. David Jassby Committee: Prof. David Jassby (Chair), Prof. Eric Hoek, Prof. Jenny Jay, Prof. San	
Carnegie Mellon University MSc, Chemical Engineering Thesis: "Modelling Mass Transport Limitations in Capacitive Deionization" Advisor: Prof. Meagan Mauter	Dec 2015
B.M.S. College of Engineering Visvesvaraya Technological University B.E., Chemical Engineering	May 2013
Research Experience	
Postdoctoral Scholar University of California, Los Angeles Advised by: Prof. David Jassby <i>Electrochemical transformation of high energy compounds and hexavalent chro</i> <i>Ammonium Nitrate Solution</i> Developed a platform membrane-based treatment technology for the oxidation of compounds, such as RDX, HMX, and amine nitrates, and electrochemical reduce hexavalent chromium present in ammonium nitrate solution (ANSOL). Electricate membranes developed were also used to facilitate ammonia recovery.	2022- Present mium in of high energy tion of ally conductive
Ph.D. Researcher University of California, Los Angeles Advised by: Prof. David Jassby <i>High precision ion selective membranes for nutrient recovery</i> Developed novel ion exchange mixed matrix membranes that exploit outer-sphe interaction for selective ion transport. Highly selective phosphate recovery achie modified cation exchange membrane.	2016-2022 re coordination eved using a
Nutrient Recovery Using Modified Polymeric Membranes Developed novel membranes to extract nutrients from food and agricultural was specifically nitrogen and phosphorus. Produced electrically conducting gas separ membranes to recover nitrogen, and modified cation exchange membranes to recover ions. Improved nutrient recovery over traditional processes.	tewater, ration cover phosphate
Mathematical Model for Carbon Nanotube Coated Electrically Conductive Mem Developed a mathematical model based on the extended Nernst Plank model rejection due to electromigration. The model successfully predicted Cr(VI) reje potentials.	<i>abrane</i> to predict Cr(VI) action at high cell
$\mathbf{D}_{\text{res}} = 1_{\text{res}} + 1_{\text{res}$	CT 1°CC

Developed a mathematical model based on vapor pressure difference to study flux differences between the coated and uncoated membranes as a function of the temperature.

Masters' Student | Carnegie Mellon University Advised by: Prof. Meagan Mauter, Modelling Mass Transport Limitations in Capacitive Deionization *Feb* – *Dec* 2015

Developed a two-dimensional model on COMSOL multiphysics to study the mass and charge transport effects ions in a capacitive deionization cell. Extended the model to three dimensions and solved the governing equations to study the effect of operational parameters on the ion movement. Model qualitatively predicted salt adsorption capacity.

Academic Project | Carnegie Mellon University

Jan – May 2015

Process optimization of propylene manufacture by propane dehydrogenation

Addressed optimization of propylene production by propane dehydrogenation. Performed optimization on number of trays in a distillation column as a function of cost in GAMS, to minimize the cost of equipment.

Undergraduate Researcher | B.M.S.C.E., VTU, IndiaAug 2012 - Apr 2013Advised by: Dr. Srivatsa Bettahalli, B.M.S. College of EngineeringAug 2012 - Apr 2013

Mono-Dispersed Macro Fluidic Droplet Formation and Encapsulation

Engineered formation of a continuous process to produce even sized droplets with liquid encapsulated within each globule. Optimized the residence time of the formed globules in reactive bath by applying principles of molecular gastronomy and fluid flow. Developed a model for the process using COMSOL multiphysics.

Publications

H index: 8 Total Citations: 435

Papers

Iddya, A.;, Zarzycki, P.; Kingsbury, R.; Khor, C.M.; Ma, S.; Wang, J.; Wheeldon, I.; Ren, Z.; Hoek, E.; Jassby, D. A reverse-selective ion exchange membrane for the selective transport of phosphates via an outer-sphere complexation–diffusion pathway. *Nature Nano.* **2022** (journal impact factor = 39.2)

Rao, U.; **Iddya**, **A**.; Jung, B.; Khor, C. M.; Hendren, Z.; Turchi, C.; Cath, T.; Hoek, E.; Ramon, G.; Jassby, D. Mineral scale prevention on electrically conducting membrane distillation membranes using induced electrophoretic mixing. *Environ. Sci. Technol.* **2020**, *54* (6), 3678–3690.

Iddya, A.; Hou, D.; Khor, C.M.; Ren, Z.; Tester, J.; Posmanik, R.; Gross, A.; Jassby. D. Efficient ammonia recovery from wastewater using electrically conducting gas stripping membranes. *Environmental Science: Nano* **2020**, 7 (6), 1759-1771

Hou, D.; Li, T.; Chen, X.; He, S.; Dai, J.; Mofid, S. A.; Hou, D.; **Iddya**, A.; Jassby, D.; Yang, R.; Hu, L.; Ren, Z. Hydrophobic nanostructured wood membrane for thermally efficient distillation. *Science Advances. Vol 5 no.8* **2019**

Hou, D.; **Iddya**, **A.**; Chen, X.; Wang, M.; Zhang, W.; Ding, Y.; Jassby, D.; Ren, Z. Nickel-based membrane electrodes enable high-rate electrochemical ammonia recovery. *Environmental Science* & *Technology* **2018** *52* (15), 8930-8938

Tang, L.; **Iddya, A**.; Zhu, X.; Dudchenko, A. V; Duan, W.; Turchi, C.; Vanneste, J.; Cath, T. Y.; Jassby, D. Enhanced flux and electrochemical cleaning of silicate scaling on carbon nanotubecoated membrane distillation membranes treating geothermal brines. *ACS Appl. Mater. Interfaces* **2017**, acsami.7b12615.

Duan, W.; Chen, G.; Chen, C.; Sanghvi, R.; **Iddya, A**.; Walker, S.; Liu, H.; Ronen, A.; Jassby, D. Electrochemical removal of hexavalent chromium using electrically conducting carbon nanotube/polymer composite ultrafiltration membranes. *J. Memb. Sci.* **2017**, *531* (March), 160–171.

Book Chapters

Iddya, A.; Rao, U.; Wang, J.; Su, Y.; Jassby, D. Advances in Water Desalination Technologies. 2021, 529-581.

Papers In preparation

Iddya, A.; Schwabe, K.; Jassby, D. Electrochemical membranes for Ammonium Nitrate Solution (ANSOL) treatment: RDX oxidation and hexavalent chromium reduction. (*In preparation*)

Iddya, A.; Jassby, D. Facilitated transport for ion selectivity. (In preparation)

Patents

Jassby, D.; **Iddya, A**.; Hoek, E. Membranes for the targeted extraction of phosphate. US Patent application #17/903567

Presentations

Oral presentations

Iddya, A.;, Zarzycki, P.; Kingsbury, R.; Khor, C.M.; Ma, S.; Wang, J.; Wheeldon, I.; Ren, Z.; Hoek, E.; Jassby, D. A reverse-selective ion exchange membrane for the selective transport of phosphates via an outer-sphere complexation–diffusion pathway. *American Chemical Society Spring Meeting; August 2022; San Diego, CA.*

Iddya, **A.**; Hou, D.; Khor, C.M.; Ren, Z.; Tester, J.; Posmanik, R.; Gross, A.; Jassby. D. Highly Efficient Ammonia Recovery from Wastewater using Electrically Conducting Gas Stripping Membranes. *American Chemical Society Spring Meeting; August 2019; San Diego, CA*.

Poster presentations

Iddya, A.; Shanbhag, S.; Mauter, M. Modeling convective and diffusive mass transport in capacitive deionization electrodes. *American Chemical Society Fall Meeting; August 2016; Pittsburgh, PA*.

Iddya, **A.**; Schwabe, K.; Jassby, D. Electrochemical transformation of ANSOL using electrically conductive membranes. *SERDP*, *ESTCP & OE-Innovation Symposium; December 2022; Arlington, VA*.

Panelist presentations

Women in STEM Panel: "What to do after graduation?"	Apr 2021
American Association of University Women: Panel and workshop	Oct 2017

Reviewer for Journals

Separation and Purification Technology (*Elsevier*), Environmental Science: Water Research & Technology (*Royal Society of Chemistry Journals*), Membranes (*Multidisciplinary Digital Publishing Institute*), Processes (*Multidisciplinary Digital Publishing Institute*), Sustainability (*Multidisciplinary Digital Publishing Institute*), Water (*Multidisciplinary Digital Publishing Institute*), Institute)

Fellowships

University Fellowship

Graduate division, UCLA

Industry Experience

Shell Technology Centre Bangalore

Laboratory Research Intern

Tested oil-water separation in ceramic membranes, in support of experiments performed on-site at Oman to implement polymer flooding in oil wells

2020-2021

Feb – *July* 2014

Designed experiments and operated pilot plant to reduce the number and cost of experiments

Intellectual Ventures

Technical Intern Designed experimental procedure to up-scale production of novelty chemicals Produced products which were marketed as prototype to targeted market

Himadri Chemicals

Laboratory Intern Assisted and demonstrated successful pilot-scale SNFC (sulphonated naphthalene formaldehyde condensate) production

Teaching Experience

Department of Civil and Environmental Engineering UCLA Teaching Assistant	Winter 2018
C&EE 255A: Physical and Chemical Processes for Water and Waste	ewater Treatment
Department of Chemical and Environmental Engineering UC, Teaching Assistant ENV142: Water Quality Engineering	Riverside Winter 2017
Mentoring Experience	
Clean Water Science Network Mentoring Mentored environmental engineering undergraduate students from L related research and different environmental issues Planned one-on-one zoom sessions to help students with applying to United States	2022-2023 Cohort Latin America on water- 9 graduate school in the
Graduate Research Mentoring Mark Nguyen (Masters Student, UCLA) Project: Electrochemical Cr (VI) reduction using electrically conduc	Aug 2021- Jun 2022 ting polymeric membranes
Undergraduate Research Mentoring Ingrid Spielbauer Project: Ammonia recovery from wastewater using electrically cond membranes	<i>Feb 2019- Jun 2019</i> Jucting gas stripping
Claire Ko Project: Ammonia recovery from wastewater using electrically cond membranes	<i>April 2019- Jun 2020</i> Jucting gas stripping
Volunteering Experience	
Nanoscience Summer Outreach Designed experiments for workshop-style instruction	Summer 2018 & 2019

Mentored high school students on science projects

SACNAS Outreach

Volunteered for Society for the Advancement of Chicanos/Hispanics and Native Americans in Science (SACNAS): Math and Science Academy Outreach Designed and planned experiments to explain chemical and environmental engineering to high school students

Confluence '13

Summer 2011

May 2018

Sep 2013 – Feb 2014

Organized and coordinated the undergraduate research seminar for the department of Chemical Engineering, B.M.S. College of Engineering, India

Liaised with colleagues for advertising events at various other undergraduate institutions Primary point of contact for several sponsors- drafted and negotiated sponsorship agreements Responsible for all logistics, including registration, travel, hospitality, photography, and various non-technical events

Confluence '12 and '11

Summer 2011 & 2012

Sep 2019 – May 2020

Sep 2018-May 2019

Volunteered for the undergraduate research seminar for the department of Chemical Engineering, B.M.S. College of Engineering, India

Planned and organized events for annual technical symposia, including poster and oral presentations

Leadership Experience

Graduate Student Association | UCLA

Elections Commissioner

Led a group of graduate students with a 13-person board and 14000+ members Planned and organized logistics for a social event for 5000+ students Increased student involvement in GSA elections by ~14%

Graduate Society of Women Engineers | UCLA

Director Organized and led networking night with the industry and social events for 2000+ graduate students

Facilitated 20+ annual events including women in engineering discussion panels and lunch with the dean

Graduate Society of Women Engineers | UCLA

Jan 2018-May 2018

Treasurer

Structured budget and allocated funds for student networking and professional development Spearheaded collaboration with other student led organizations to arrange joint professional and social events

Professional Affiliations

American Chemical Society (ACS) Association of Environmental Engineering and Science Professors AEESP) North American Membrane Society (NAMS) American Society of Civil Engineers (ASCE) National Alliance for Water Innovation (NAWI)

Skills and Interests

Software Skills: Proficient in programming with Python, Matlab; Adobe illustrator, Aspen plus, COMSOL Multiphysics, Adobe Illustrator

Analytical instruments: Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS), contact angle goniometer, Fourier Transform Infrared spectroscopy (FTIR), High Pressure Liquid Chromatography (HPLC), Ion Chromatography (IC), Ultraviolet-visible (UV-Vis) spectroscopy.

Languages: English (native), Kannada (native), Hindi (native), Spanish (beginner)