RUOYU WANG

ruoyu.wang.rw739@yale.edu +01 (412)209-9763 or +86 18317139507

CURRENT POSITION

Postdoctoral Associate at Yale University

EDUCATION

Vanderbilt University Ph.D. in Environmental Engineering

Carnegie Mellon University. M.S. in Civil and Environmental Engineering

Shanghai Jiao Tong University B.E. in Environmental Science and Engineering

Ph.D. DISSERTATION TITLE

Membrane-based Ion-ion Separation Processes: Nanofiltration and Electrodialysis

RESEARCH EXPERIENCE

Postdoctoral Researcher (Supervisor: Dr. Shihong Lin) Civil and Environmental Engineering, Vanderbilt University

Graduate Research Assistant (Supervisor: Dr. Shihong Lin)

Civil and Environmental Engineering, Vanderbilt University

- Evaluated and compared the performance of nanofiltration and electrodialysis for Li^+/Mg^{2+} separation.
- Extended an ion partition and transport model for mixed salts in ion exchange membranes under electrodialysis.
- Proposed and validated multi-pass nanofiltration process for high lithium recovery and product purity.
- Proposed a new framework for performance evaluation of nanofiltration-based Li⁺/Mg²⁺ separation.
- Illustrated the cross-method incomparability of solute-solute selectivity.
- Analyzed the thermodynamics and energy efficiency of zero liquid discharge processes.
- Modeled the bipolar membrane electrodialysis process for ammonia recovery from synthetic source-separated urine.
- Analyzed the thermodynamics of intercalation capacitive deionization.

Graduate Summer Research (Supervisor: Dr. Meagan Mauter)

Civil and Environmental Engineering, Carnegie Mellon University

• Participated in the proposal of corrections to Nusselt correlations in membrane distillation process to reduce uncertainty of permeability performance evaluation.

Undergraduate Research Assistant

Environmental Science and Engineering, Shanghai Jiao Tong University

- Characterized adsorption behavior and mechanism of graphene material by static batch tests and modeling.
- Isolated PAHs degrading bacteria from petroleum-contaminated soil and optimized the degradation conditions.

-

TEACHING AND MENTORING EXPERIENCE

Civil and Environmental Engineering, Vanderbilt University	Spring 2022 & 2023
Teaching Assistant, CE 3700L-01 Fluid Mechanics Lab Civil and Environmental Engineering, Vanderbilt University	Fall 2019
Teaching Assistant, CE 3100W-01 Civil Environmental Engineering Lab Civil and Environmental Engineering, Vanderbilt University	Spring 2019

PUBLICATIONS (Peer-Reviewed Journal Publications)

Starting from Oct. 15th 2023

Nashville, TN May 2023

Pittsburgh, PA Dec 2018

Shanghai, China July 2017

2023.5-2023.10

2019.1-2023.5

2014-2017

.....

2017-2018

First Author & Co-first Author:

- Wang, R., Alghanayem, R., & Lin, S. (2023). Multi-pass Nanofiltration for Lithium Separation with High Selectivity and Recovery. *Environmental Science & Technology*.
- Wang, R., Duddu, R., & Lin, S. (2023). Extended Donnan-Manning theory for selective ion partition and transport in ion exchange membrane. *Journal of Membrane Science*, 121782.
- Wang, R., He, R., He, T., Elimelech, M., & Lin, S. (2023). Performance Metrics for Nanofiltrationbased Selective Separation for Resource Extraction and Recovery. *Nature Water*, 1-10.
- Lopez, K.¹, Wang, R.¹, Hjelvik, E., Lin, S., & Straub, A. (2022). Toward a Universal Framework for Evaluating Transport Resistances and Driving Forces in Membrane-Based Desalination Processes. <u>Science Advances</u>, 9(1), eade0413. (¹ equal contributions)
- Wang, R., & Lin, S. (2022). Thermodynamics and Energy Efficiency of Zero Liquid Discharge. <u>ACS</u> <u>ES&T Engineering</u>, 2(8), 1491-1503.
- Wang, R.¹, Zhang, J.¹, Tang, C. Y., & Lin, S. (2022). Understanding Selectivity in Solute–Solute Separation: Definitions, Measurements, and Comparability. *Environmental Science & Technology*, *56*(4), 2605-2616. (¹ equal contributions)
- Li, Y.¹, Wang, R.¹, Shi, S., Cao, H., Yip, N. Y., & Lin, S. (2021). Bipolar membrane electrodialysis for ammonia recovery from synthetic urine: experiments, modeling, and performance analysis. *Environmental Science & Technology*, 55(21), 14886-14896. (¹ equal contributions)
- Wang, R., & Lin, S. (2021). Pore model for nanofiltration: History, theoretical framework, key predictions, limitations, and prospects. *Journal of Membrane Science*, 620, 118809.
- Wang, R., & Lin, S. (2020). Thermodynamic reversible cycles of electrochemical desalination with intercalation materials in symmetric and asymmetric configurations. *Journal of colloid and interface science*, 574, 152-161.

Others:

- Zhang, X., Yao, Y., Horseman, T., **Wang, R.**, Yin, Y., Zhang, S., Tong, T. and Lin, S. (2023). Electrodialytic crystallization to enable zero liquid discharge. *Nature Water*, pp.1-8.
- Mi, J., Wu, X., Capper, J., Li, X., Shalaby, A., **Wang, R.**, Lin, S., Hajj, M., & Zuo, L. (2023). Experimental investigation of a reverse osmosis desalination system directly powered by wave energy. *Applied Energy*, 343, 121194.
- Zhu, Y., Gui, L., **Wang, R.**, Wang, Y., Fang, W., Lin, S., & Jin, J. (2023). Regulation of molecular transport in polymer membranes with voltage-controlled pore size at the angstrom scale. *Nature* <u>*Communication*</u>, 14(1) 2373.
- Jeong, N., Epsztein, R., Wang, R., Park, S., Lin, S., & Tong, T. (2023). Exploring the Knowledge Attained by Machine Learning on Ion Transport across Polyamide Membranes Using Explainable Artificial Intelligence. *Environmental Science & Technology*.
- Liu, W., **Wang, R.**, Straub, A., & Lin, S. (2023). Membrane Design Criteria and Practical Viability of Pressure-driven Distillation. *Environmental Science & Technology*, *57*(5), 2129-2137.
- He, R., Xu, S., **Wang, R.**, Bai, B., Lin, S., & He, T. (2022). Polyelectrolyte-based nanofiltration membranes with exceptional performance in Mg²⁺/Li⁺ separation in a wide range of solution conditions. *Journal of Membrane Science*, 663, 121027.
- Dudchenko, A. V., Hardikar, M., Anand, A., Xin, R., Wang, R., Gopu, C., & Mauter, M. S. (2022). Guidance on Nusselt Number Correlation Selection in Membrane Distillation. <u>ACS ES&T Engineering</u>, 2(8), 1425-1434.
- Christie, K. S., Horseman, T., **Wang, R.**, Su, C., Tong, T., & Lin, S. (2022). Gypsum scaling in membrane distillation: Impacts of temperature and vapor flux. *Desalination*, 525, 115499.
- Lu, Y., Wang, R., Zhu, Y., Wang, Z., Fang, W., Lin, S., & Jin, J. (2021). Two-dimensional fractal nanocrystals templating for substantial performance enhancement of polyamide nanofiltration membrane. *Proceedings of the National Academy of Sciences*, *118*(37), e2019891118.

- Dudchenko, A. V., Hardikar, M., Xin, R., Joshi, S., Wang, R., Sharma, N., & Mauter, M. S. (2020). Impact of module design on heat transfer in membrane distillation. *Journal of Membrane Science*, 601, 117898.
- Zhao, P., Yu, F., **Wang, R.**, Ma, Y., & Wu, Y. (2018). Sodium alginate/graphene oxide hydrogel beads as permeable reactive barrier material for the remediation of ciprofloxacin-contaminated groundwater. *Chemosphere*, 200, 612-620.

PRESENTATIONS

Oral Presentations

- Comparison of Nanofiltration and Electrodialysis for Lithium Magnesium Separation with a Unified Mass Transport Model. 2023 Association of Environmental Engineering and Science Professors Conference.
- Lithium/Magnesium Selectivity in Membrane Separation: Definition, Measurement, and Process Scale Evaluation. 2022 International Conference on Resource Sustainability.
- Solute-solute Selectivity in Membrane Separation: Definition, Measurement, and Process Scale Evaluation. 2022 North American Membrane Society Conference.
- Vapor Flux of Membrane Distillation: Theoretical Limits, Insights on Membrane Design, and Anomalous Phenomena. 2022 North American Membrane Society Conference.

Poster Presentations

- Solute-solute Selectivity in Membrane Separation: Definition, Measurement, and Process Scale Evaluation. 2022 Association of Environmental Engineering and Science Professors Conference.
- Solute-solute Selectivity in Membrane Separation: Definition, Measurement, and Process Scale Evaluation. 2022 North American Membrane Society Conference.
- Thermo-osmosis in Polyamide Membranes. 2021 North American Membrane Society Conference.

HONORS AND AWARDS

SERVICE

- Reviewer of research journals: Environmental Science & Technology, Environmental Science & Technology Letters, Chemical Engineering Journal Advances, Journal of Water Process Engineering, and Resources, Conservation & Recycling.
- Social media editor of research journals: Chemical Engineering Journal Advances, and Journal of Water Process Engineering.
- Officer of Chinese-American Professors in Environmental Engineering and Science Student Chapter.

PROFESSIONAL MEMBERSHIPS

- American Chemical Society, 2023
- Association of Environmental Engineering and Science Professors, 2022-2023
- Chinese-American Professors in Environmental Engineering and Science, 2021-2023
- North American Membrane Society, 2020-2023